Transfert de style : et si Van Gogh peignait Tux ? – Partie 2/2

3.3 Fast neural network

Il existe une implémentation plus récente du style transfer permettant un calcul bien plus rapide. Celle-ci est basée sur un article d’octobre 2016 [9]. L’idée est de remplacer l’erreur (loss) « par pixel » par l’erreur « perceptuelle ». En d’autres termes, le système ne cherche plus à faire coller chaque pixel à l’image originale, mais calcule la perte à un niveau plus élevé, ce qui permet de mesurer plus finement la similitude « perçue » entre deux images. De plus, l’implémentation utilise une modification dans l’architecture du réseau qui permet également un gain de performance. Celle-ci se base sur un précalcul du modèle, qui peut alors être utilisé à faible coût pour être appliqué sur de nouvelles images.

Lire la suite

Transfert de style : et si Van Gogh peignait Tux ? – Partie 1/2

Qu’est-ce que le style transfer ? Comment cela fonctionne-t-il ? Comment en faire chez soi ? Cet article est là pour répondre à toutes ces questions, et pour vous guider pas à pas sur un exemple.

Le neural style, ou style transfer, a récemment fait son apparition, avec la publication d’un article en septembre 2015 [1]. Il émerge d’un contexte de fort développement des réseaux de neurones pour diverses applications, et notamment pour l’art. Quelques mois auparavant apparaissait le deep dream, programme faisant ressortir des patterns inexistants dans des images, créant ce qui pourrait être considéré comme un style artistique à part entière.

Lire la suite